OP 19 November, 2021 - 09:55 AM
(This post was last modified: 19 November, 2021 - 09:55 AM by Instagram.)
Don't forget to LIKE the thread please
Do you want to learn Python for free? You can enroll this Python with Udemy Coupons for FREE! You can search for more free Udemy Courses through cracked.to Udemy Resources section.
Requirements
You know Python. You know Excel. You may even know how to crunch numbers in R using the Tidyverse if you have a statistics background.
But when it comes to applying all this knowledge to the world of data science, you know you need more than these tools to be successful. What makes matters worse is that you are not exactly sure of what order you should be learning which data science tools. It can be a challenge to know exactly where to focus, and how to apply what you do know.
At Mass Street University, we guide statisticians and developers interested in exploring how to process and analyze data—efficiently. In Python for Data Analysis, we focus you on precisely what you need to know, and teach you how best to utilize what you already do know.
In the course, we will teach you how to combine your existing knowledge of Python with tools like Pandas and Numpy. If you have only worked with the basic Python data types, approaching some of the higher order data types can be intimidating. The structure of our course takes you from the simplest tools to the more complex to ensure you stay focused on what you need while you build on your font of data science knowledge.
JupyterLab is one tool you may not be familiar with, and it is a popular data analysis notebook that supports many languages, including Python. Notebook technology is relatively new to the world of data science, and we will go over how JupyterLab will allow you to write much smaller amounts of code efficiently.
There are a ton of data science tools that interact very well with Python to make data science a breeze when explored and taught properly. And at Mass Street University, we make sure that this dynamic is managed as efficiently as possible. Enroll today in Python for Data Analysis to stay focused on what you need to excel in data analysis.
Who this course is for:
Do you want to learn Python for free? You can enroll this Python with Udemy Coupons for FREE! You can search for more free Udemy Courses through cracked.to Udemy Resources section.
Requirements
- Have completed Survival Python or have equivalent Python experience
- You will need to be able to install software on your machine
- The Anaconda distro of Python
You know Python. You know Excel. You may even know how to crunch numbers in R using the Tidyverse if you have a statistics background.
But when it comes to applying all this knowledge to the world of data science, you know you need more than these tools to be successful. What makes matters worse is that you are not exactly sure of what order you should be learning which data science tools. It can be a challenge to know exactly where to focus, and how to apply what you do know.
At Mass Street University, we guide statisticians and developers interested in exploring how to process and analyze data—efficiently. In Python for Data Analysis, we focus you on precisely what you need to know, and teach you how best to utilize what you already do know.
In the course, we will teach you how to combine your existing knowledge of Python with tools like Pandas and Numpy. If you have only worked with the basic Python data types, approaching some of the higher order data types can be intimidating. The structure of our course takes you from the simplest tools to the more complex to ensure you stay focused on what you need while you build on your font of data science knowledge.
JupyterLab is one tool you may not be familiar with, and it is a popular data analysis notebook that supports many languages, including Python. Notebook technology is relatively new to the world of data science, and we will go over how JupyterLab will allow you to write much smaller amounts of code efficiently.
There are a ton of data science tools that interact very well with Python to make data science a breeze when explored and taught properly. And at Mass Street University, we make sure that this dynamic is managed as efficiently as possible. Enroll today in Python for Data Analysis to stay focused on what you need to excel in data analysis.
Who this course is for:
- Students who have just finished Survival Python.
- Developers who are familiar with Python but have never worked in data science and want to learn the most commonly used tools.
- Statisticians looking to migrate from R to Python.